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The major area of current interest in adaptive arrays in their application to problems arising in 
radar, sonar, and communication systems, where the designer almost invariably faces the 
problem of interference suppression. In general, for real time processing, the robustness, with 
respect to the changed environment, of the adaptive beamforming algorithm with rapid 
convergence rate is desired. In this paper, a new hybrid adaptive beamforming algorithm is 
derived in the discrete-cosine transformed domain for multiple jammers suppression. Overall 
performance improvement, in terms of convergence rate and the computational requirement, is 
addressed. From computer simulation results, it was found that the presented method 
outperformed the conventional Frost's linear constraints LMS algorithm, in terms of the 
capability of jammers suppression and the rate of convergence. 

PACS numbers: 43.60.Gk 

INTRODUCTION 

Adaptive array processing is now of growing impor- 
tance in the field of communications, radar, sonar, and 
seismology systems, etc. 1'2 The adaptive array can be used 
to achieve good nulling capability of the undesired inter- 
ference adaptively over the conventional delay-and-sum 
beamforming array. Capon et al. 3 invented linearly con- 
strained adaptive beamforming in 1967. Griffiths and Jim 4 
advanced the generalized sidelobe canceler, which was 
equivalent to a Frost's beamformer under certain condi- 
tions. 

It is well known that the performance of the conven- 
tional time domain LMS algorithm is highly related to the 
eigenvalue spread of the input autocorrelation matrix. 
Since the conventional Frost's linear constraints LMS 5 
(LCLMS), adaptive beamforming used the LMS algo- 
rithm during the adaptation processes. Similarly, the per- 
formance of the LCLMS beamforming algorithm may be 
very sensitive to the power ratio of the multiple jammers. 
Thus the LCLMS beamforming algorithm has some prob- 
lems associated with performance degradation in the mul- 
tiple jammers environment. To overcome this drawback, in 
this paper, a new hybrid linearly constrained LMS 
(HLCLMS) adaptive beamforming algorithm is proposed. 
The basic idea behind the new method is to use the trans- 

formed domain adaptive filtering technique along with the 
Frost's LCLMS algorithm to achieve the desired perfor- 
mance. 

In this paper, we first develop the HLCLMS adaptive 
beamforming algorithm in the discrete cosine transformed 
domain and discusses the rationale behind it. Then the 

attention is focused on the comparison with the conven- 
tional Frost's LCLMS adaptive beamforming algorithm in 
the multiple jammers environment. The robustness of the 
presented HLCLMS method with respect to the power ra- 
tio of the jammers is addressed. 

I. REVIEW OF THE FROST'S LCLMS ALGORITHM 

To proceed with the derivation of the hybrid adaptive 
beamforming algorithm in the transformed domain, we 
first review the conventional array system. 5 In the conven- 
tional array system, a sampled-data version of the analog 
signal processor is considered in developing the optimum 
weight vector solution by assuming that the voltages ap- 
pearing at each array tap are sampled every A seconds (A 
may be a multiple of the delay r). The vector of sampled 
signals at the time index is denoted by x (n) and is defined 
by 

x(n) ---- Ix 1 (nA),x2 (nA),...,xs:œ (nA) ]r. ( 1 ) 

The subscript KL denotes K times L, where K and L are 
the number of channels and tap delay lines, respectively. 
Any sampled signals that appear may be regarded as the 
sum of signals due to the look direction signals s and non- 
look direction noises n, so that 

x(n)=s(n)+n(n). (2) 

The vectors of the look signal and the nonlook direction 
noises are defined by 
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s ( n ) -- [ •( n• ),...,•( n• ) ,•( n• - r),...,•( n• - r) ,...,•( n• - ( L - 1 ) r) ] r 

K taps K taps K taps 

KX L 

(3a) 

and 

n(n) = [nl(nA),n2(nA),...,ns:z,(nA) ]r, (3b) 

respectively. The vector of weight appearing at each tap is 
denoted by w (n), where 

w(n) = [wl(n),w2(n),...,WKœ(n) ]T. (4) 

We assume that both the signals and noises can be modeled 
as zero-mean random processes with unknown second- 
order statistics. The covariance matrix of x is designated as 
Rxx=E{x(n)xr(n)•. The vector of look direction signals, 
s(n), is assumed to be uncorrelated with the vector of 
nonlook direction noises, n(n). 

The expected value of the array output power is given 
by 

E•y 2 ( n ) } = E(w ( n ) rx ( n ) x r ( n ) w ( n ) } = w rRxxw. 
(5) 

Define a KLXL constraint matrix C having cj by 
C=[Cl,...,cj,...,cL] with cj, j= 1,...,L, being the KLX1 
column vector. The entries of the jth group of K elements 
of cj are unity and zero otherwise. Furthermore we define 
the L-dimensional vector, f=[fl,f2,...,fœ] r, such that 
Crw(n) =f. 

Since the look direction frequency response is fixed by 
the constraint described above, minimizing the total output 
power given by (5), the constrained optimization problem 
can be expressed as 

minimize w r (n) Rxxw (n), (6) 
w 

subject to Crw(n) = f. (7) 

Finding the optimal weight vector Wop t to satisfy (6) and 
(7) can be accomplished by the method of Lagrange mul- 
tiplier. From Ref. 6 we have 

Wopt = R•xlC[ cTR•xlC ] -if, ( 8 ) 
where the existence of [cTR•xlc] -1 is guaranteed by the 
fact that Rxx is positive definite ? and C has full rank. 

For convenience, we define the KL-dimensional col- 
umn vector as 

g•c(cTc)-lf (9) 

and the KL X KL matrix as 

P=I-C(CrC)-Ic r, (10) 

where I is the KL X KL identity matrix. Now, applying 
(9) and (10) to (8) and recognizing that 
y(n)=xr(n)w(n), the Frost's linear constrained LMS 
adaptive beamforming algorithm can be derived: 5 

w(n+ 1)=P[w(n)-i•y(n)x(n)]+g, (11) 

with the initial weight vector, w(0)=g and the step size 
chosen to satisfy the condition 5 

0 < !• < 2/3 Tr [Rxx] ( 12 

to assure that the algorithm of (11 ) converges. 

II. THE HYBRID ADAPTIVE BEAMFORMER 

So far we have reviewed the conventional Frost's adap- 
tive beamforming algorithm. In the following, we will ap- 
ply the discrete cosine transform 8 (DCT) to each sensor as 
depicted in Fig. 1. Based on the array structure shown in 
Fig. 1, the hybrid constrained adaptive beamforming algo- 
rithm can be derived. For convenience, we refer to the 
adaptive array of Fig. 1 as the transformed domain hybrid 
linear constraints LMS (HLCLMS) adaptive beamformer. 

The HLCLMS adaptive beamformer depicted in Fig. 1 
is implemented with K channels. In each channel, the 
tapped delay version of the received signals are first trans- 
formed by the DCT and then used in the HLCLMS adap- 
tive beamforming algorithm for adaptation. For the ith 
channel, the vector of sampled signals at the nth time index 

HLCLMS 

Algorithm 

FIG. 1. The structure of the HLCLMS beamformer. 
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is denoted by xi(n) and zi(n) is the corresponding trans- 
formed signal vector. Both xi(n) and zi(n) are designated 
and related as 

xi(n)= [ xi( nA ) ,XK+ i( nA ) .... ,x( œ_ l )K+ i( n A ) ] r, 

i= 1,2,...,K (13) 

and 

zi( n ) = •rxi( n ) 

= [zi(nA),ZK+i(nA),...,Z(L_l)K+i(nA) ]r. (14) 

In (14), the DCT transformation matrix •r is given by 

•00 (•01 ''' •O(L--1) 

•r__ •blo •bll '" •bl(L-1) (15) 
•b(L- 1)0 •b(L-1)l ''' •b(L_ 1)(L_ 1) 

with its entries being defined as 8 

( •ij=ci cos (2j + 1) •-• , i,j=O, 1,...,L-- 1, (16) 

and 

or L 

Since 

L--1 1, i=j, 

m=0 O, i-'-•j 

we have that, ß r• = IL x L (i.e., ß r is an orthogonal ma- 
tfix). 

In the case that the size of tap weights is large, to save 
computation time and the consideration for hardware im- 
plementation, Chern 9 derived a recursive DCT algorithm. 
For whole K channels, the KL-dimensional vector of sam- 
pled signals at the nth time index is denoted by x(n), i.e., 

x ( n ) = [ X 1 ( nA ),x2 ( nA ),...,xgz (nA) ] r (17) 

and its corresponding transformed domain vector is repre- 
sented by 

z( n ) =•Tx( n ) = [zl ( nA ),z2( nA ),...,ZKL ( nA ) iT. 
(18) 

From (14), (15), and (18), it is clearly that the transfor- 
mation matrix (•r) can be expressed as 

[ lP00] [lP01 ] ''' 

•itr= [lP10] [lPll ] ''' 
: : '.. 

[lP(L--1)O] [lP(L--1)I] ''' 

with 

[lPO(L--1) ] 

[lPl(L--1)] 
ß 

[lP(L--1)(L--1) ] 
(19) 

= 
0 •ij KXK 

for i,j--O, 1,...,L-- 1. (20) 

It is notice that based on the definition of (16), we can 
easily show that •r•=I. To derive the relationship be- 
tween the Frost's LCLMS algorithm and the HLCLMS 
algorithm, we first premultiply •r on both sides of (11) 
yielding 

ß rw(n+ 1 )=•rP[w(n)--/.t•y(n)x(n) ] +•rg. (21) 

Now let us define the corresponding transformed domain 
vectors of g and w(n) as to be a and b(n)' 

a=•rg (22) 

and 

b(n) =•rw(n), (23) 

respectively, with b (n) being designated as 

b(n) = [ bn, 1 ,bn,2,...,bn,KL ] r. (24) 

Using the definitions of (10) and (19), we can show that 
p=•rp• (see Appendix A). Now, using this fact and 
recognizing that z (n) = •rx (n), (21 ) becomes 

b(n+ 1 ) = q•rw(n + 1 ) 

= q•rP•[b(n)--ktsy(n)•rx(n) ] +a 

=P[b(n)--ktsy(n)z(n) ] +a. (25) 

From (8) and (23), the optimal transformed tap weight 
vector will be 

bop t = •I t TWop t 
= •itTR•xlC [ CTR•xlC ] -If 

=R•zl (•rC) [ (•rC) rR•zl (•rC) ]-if, (26) 

where R•z 1 is the inverse matrix of R,.,.. Here, the trans- 
formed domain autocorrelation matrix Rzz is defined as 

Rzz = E{z ( n )zr( n ) } = ß rRxxq•. (27) 

Similarly, the beamformer output of the transformed do- 
main adaptive filter, by definition, is given by 

y( n ) =bT ( n )z( n ) =wT( n )•InltTx( n ) =wT ( n )x( n ). 
(28) 

From (28) we learn that the output signals of the trans- 
formed domain beamformer have a similar time domain 

expression as the Frost's LCLMS beamformer. Thus, in 
array processing, if the output signal is desired for further 
processing, the use of the transformed domain beamformer 
would not require any inverse transformation. 

Moreover, the normalized power version of (25) can 
be similarly expressed by 
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(FFT) Power $pee[rum 

• 000 0 1 • 0 26 0...39 0 

Normalized Frequency f 
52 

FIG. 2. The power spectrum of the look direction signal. 

b(n+ 1)=P[b(n)-Uy(n)z(n) ] +a (29) 

with 

U = diag{gt ( 1 ),p (2),...,p (KL)), (30) 

where diag(-) denotes the diagonal matrix and the step 
size p(i), i= 1,...,KL, is given by 

P$ 

l a (i) --pi(nA•' ( 31 ) 
where pi(nA ) is the averaged power of zi(nA ) and can only 
be estimated. In practice, for instance, we may use the 
following formula: 

0'2 

Jammer 

N+I 
Jammer 2 

oK 

FIG. 3. Assumed signal and jammers distributions. 

TABLE I. Case 1 jammers in simulation. 

Center digital HLCLMS LCLMS 
Direction frequency Power gain gain 

Jammer 1 22.5* 0.3 30 dB --61.82 dB --40.25 dB 

Jammer 2 -- 18.1' 0.4 30 dB --58.85 dB --42.15 dB 

pi(nA) = 
(n-- 1)pi[ (n-- 1)A)] +•(nA) 

for i-- 1,2 .... ,KL. (32) 

It should be noted that the beamforming algorithm de- 
scribed in (25) will be equivalent to (11) if the discrete 
cosine transform is used. This is due to the fact that the 

DCT matrix is an orthogonal matrix. However, this is not 
the case of (29) due to the normalized power in (31). 
Thus, the convergence property of (25) and (29) will differ 
dramatically. 

In Ref. 10, the authors have shown that the hybrid 
LMS (HLMS) adaptive filtering algorithm performed 
more robust than the conventional LMS as well as the 

transformed domain NLMS adaptive algorithms. The fun- 
damental concept behind the HLMS algorithm (described 
in Ref. 10) is to use the merits of the conventional LMS 
and the transformed domain NLMS adaptive algorithms to 
achieve the desired performance. The single channel hy- 
brid LMS adaptive filtering algorithm discussed in Ref. 10 
can be extended to the multiple channels adaptive array 
signal processing addressed in this paper. Similar to the 
approach of the hybrid adaptive filtering algorithm dis- 
cussed in Ref. 10, the HLCLMS adaptive beamforming 
algorithm is the combination of the LCLMS adaptive 
beamforming algorithm and the normalized power version 
adaptive beamforming algorithm defined in (29). Thus, 
the weights updated equation of the HLCLMS beamform- 
ing algorithm can be expressed as 

b(n+ 1)=P[b(n)--A3,(n)z(n) ] +a, 

where 

(33) 

[•t 1 I, for initial adaptation process, As= [bt2A_l, when input signals are sufficient. 
(34) 

In (34), A-• is the inverse matrix of A, and the diagonal 
matrix A is defined by 

A = diag( p• ( nA ) ,P2 ( nA ) ,...,Ps:t• ( nA ) }. (35) 

Note that in (34), when As--b t 1 I, (33) can be viewed as 
the transformed domain expression of the Frost's LCLMS 
algorithm. As discussed earlier, this is due to the fact that 
the discrete cosine transform is an orthogonal matrix and 
the information is then preserved. Under this situation, the 
HLCLMS algorithm with As=plI will perform equiva- 
lently to the Frost's LCLMS algorithm. This means that, 
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FIG. 4. Learning curve of case 1. 
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FIG. 5. The beam pattern at digital frequency 0.3, jammer arrival angle is 22.5 ø (case 1). 
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FIG. 6. The beam pattern at digital frequency 0.4, jammer arrival angle is --18.1 ø (case 1). 
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TABLE II. Case 2 jammers in simulation. 

Center digital HLCLMS LCLMS 
Direction frequency Power gain gain 

Jammer 1 22.5 ø 0.3 40 dB --65.15 dB --42.25 dB 

Jammer 2 -- 18.1 ø 0.4 20 dB -- 52.44 dB -- 31.25 dB 

in the initial adaptation process, the HLCLMS algorithm 
is operating in the Frost's LCLMS algorithm mode. But, 
under this mode, the convergence rate of the HLCLMS 
algorithm will be affected by the power ratio between the 
input jammers. On the other hand, when A s is setting to 
the value of/•2A-1, the HLCLMS algorithm will perform 
similar to the normalized power version algorithm defined 
in (29). That is, the convergence rate of the algorithm is 
less affected by the jammers' power ratio and we may say 
that the HLCLMS algorithm is operating in the normal- 
ized power version algorithm mode. 

The directional pattern (that is, the relative sensitivity 
of response to signals for a specified frequency, rot, from 
various directions, 0) of the Frost's LCLMS structure can 
be easily shown to be 

K L 

G(O)---- • • W(rn_l)+t½--Jcøt(rn--1)e (i--1)cøtsinO. 
i=1 rn=l 

(36) 

However, in the HLCLMS adaptive beamforming algo- 
rithm, the transformed weight vector b is obtained instead 
of w, thus (36) cannot be applied directly to obtain the 
directional pattern. In general, to compute the directional 
pattern we may take the inverse transform of the tap 
weights b to obtain w and then apply it into (36). This may 
results in an increase in the computation time if the beam 
pattern plots are required. For example, to calculate the 
1024-point beam pattern at DECstation 2100 and measure 
the computation time, we found that the computation time 
will increase about 92.18% over the time spent using the 
LCLMS algorithm. To reduce the expense of computation 
time, we can simply derive the directional pattern in terms 
of the transformed weights (see Appendix B), so that the 

computation time is increased only about 9.78% with re- 
spect to the one using (36). 

III. SIMULATION RESULTS 

In this section, the computer simulation is carried out 
to validate and investigate the performance of the pre- 
sented method. We consider three performance metrics for 
two algorithms. The performance metrics are ( 1 ) the deci- 
bel (dB) interference rejection, (2) the improvement of 
convergence rates (ICR), and (3) the overall increment 
time (OIT). The algorithms are the LCLMS and 
HLCLMS adaptive beamforming algorithms. Both perfor- 
mance metrics ICR and OIT can be used to evaluate the 

overall performance improvement and will be discussed 
later. 

The received signal in each sensor consists of a broad- 
band signal and two interferences (jammers) buried in a 
white Gaussian noise. For convenience, the desired look 
direction of the broadband signal is chosen to be 0=0 ø. 
The broadband signal is generated by sampling a pulse 
signal (at)e -at and then taking convolution with a time 
sequence generated by a random process. The Fourier 
transform of the pulse signal (at)e -at is given by 

F(f•) =FT[ (at)e -at] -- (a+jf•)2, (37) 
where FT[-] denote the Fourier transform and f• is the 
analog radian frequency. The 3-dB bandwidth can be eval- 
uated from (37) and the center frequency can be set any- 
where by modulating the base-band spectrum. The direc- 
tional interferences are two sinusoidal noise signals 
(jammers) incident at angles 01 and 02, respectively. 

If we use • to represent the underwater propagation 
speed of signal, the arrival of a given phase front at the 
reference sensor is earlier than at the next sensor by a 
number of time steps equal to 

d sin Oi 2rrd sin Oi 

Ki-- •--•---- 2.•0i ' (38) 

HLCLMS 

i i i i i i i i 

0 128 256 384 512 640 768 896 1024 

Number of iterations (n) 

(a) HLCLMS 

LCLMS 

t28 256 384 512 640 768 806 t 24 

Number of iterations (n) 

(b) LCLMS 

FIG. 7. Learning curve of case 2. 
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FIG. 8. The beam pattern at digital frequency 0.3, jammer arrival angle is 22.5 ø (case 2). 

where A is the time step size (or sampling interval) in 
seconds, A i is the wavelength of signal with digital center 
radian frequency being to i (coi--f•iA), and d is the distance 
of the sensor spaced apart. In our simulation, the power 
spectrum of the broadband signal is shown in Fig. 2. Here, 
d=Ao/2, A o is the wavelength at the radian frequency to o, 
and to o is the maximum digital radian frequency with a 
range -- st<COo<St. So, for jammer 1, 

2•r(A/2)sin 01 

K 1 -- •ltO 1 
and for jammer 2, 

2•r(A/2) sin 02 

K 2 -- •L2o)2 ß 
Therefore these two jammer signals impinging on the jth 

1 x•(n), for j sensor are xj(n) and = 1,2,...,K, which are 
given by 

x}(n)=A] cos{[n+ (j-- 1)•]]t0]) (39) 
and 

x•(n) =A 2 cos{ [n + (j-- 1)K2]t02}. (40) 

Thus each sensor has a broadband signal with two sinu- 
soidal jammers buried in a white Gaussian noise, i.e., 

x2(n) =s2(n) +xJ(n) +x•(n) +n2(n). (41) 

Let us define the jammers' power ratio (JPR) to be the 
ratio between the largest jammer power and the smallest 
jammer power. To study the effect of the JPR and the 
influence of the step size/z•, some examples are given to 
illustrate the convergence property of the HLCLMS and 
LCLMS algorithms. 

In the following computer simulations, the number of 
tap weights and the initial weight vector w(0) are fixed. 
Moreover, we assumed that the linear array has 12 sensors 
(K= 12) on a line with each sensor having ten taps spaced 
at r-second intervals (thus KL= 120). The unit gain con- 
straint has been put on the look direction. In all cases, the 
switch point used in the HLCLMS algorithm is set to 16. 

The initial beam patterns are shown in each beam- 
pattern figure for digital frequencies at fl =0.3( =tOl/2•r ) 
and f2=0.4(=to2/2•r) corresponding to w(0). For in- 
stance, for A = l/1000 (second), the corresponding analog 
frequencies of fl and f2 will be 300 and 400 Hz, respec- 
tively. The direction of the jammers are placed on the side- 

BEAM PATTERN 
, 

• - - '? NoI-AdaptlTe 
____ ': ,.HL•LUS. ! ....... 

. 

i & i i i i i i i i 

-½•-•o-• o l• ao ½• 60 75 •o 
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(a) HLCLMS 

z• 

BEAM PATTERN 
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, i i i i & 

-09-75 -e0 -45 --30 -- 1,5 0 I'õ 3; 4'5 6'0 7; 
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(b) LCLMS 

FIG. 9. The beam pattern at digital frequency 0.4, jammer arrival angle is --18.1 ø (case 2). 
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TABLE III. Case 3 jammers in simulation. 

Jammer 1 

Jammer 2 

Center digital HLCLMS LCLMS 
Direction frequency Power gain gain 

22.5 ø 0.3 45 dB --61.25 dB --49.35 dB 

--18.1 ø 0.4 15 dB --56.32 dB --16.42 dB 

lobe of the initial array pattern. Figure 3 depicts the signal 
and the jammers impinging on the linear array. For con- 
venience, the angle of signal arrival is simple given as 
Os--'O ø. The signal bandwidth is 0.0461, the digital center 
frequency is 0.15, and the signal-to-noise ratio (SNR) is 0 
dB. The angles of jammers arrival are 0• and 02. To see the 
effect due to eigenvalue spread the following cases are con- 
sidered. 

A. Case I 

First, let us consider the case that the JPR being unity. 
The parameters and the results are listed in Table I. From 
Table I, we see that the jammer powers are 30 dB with 
respect to the target signal. 

To make a fair comparison, the value of/z• is the same 
as the value of/zs in LCLMS correspondingly. For the 
LCLMS algorithm to converge the step size (/zs), from 
(12), should satisfy the following condition: 
0 </z• < 2.797 X 10 -6. In this case, the step size/z• is chosen 
to be 1.4X 10 -6. On the other hand, for the HLCLMS 
algorithm, the step sizes /z• and /z2 are chosen to be 
1.4 X 10 -6 and 2.75 X 10 -3, respectively. The curves are 
obtained by averaging 500 independent trials. Figure 4(a) 
and (b) shows the learning curves of the HLCLMS and 
LCLMS algorithms. Observing Fig. 4 we found that the 
convergence rate of both algorithms is very similar, but the 
steady-state mean-squared error (MSE) of the HLCLMS 
algorithm has smaller variation compared with the 
LCLMS algorithm. Figures 5 and 6 are the corresponding 
frequency responses of the beam pattern of Fig. 4 at digital 
frequencies of 0.3 and 0.4. As can be seen from the re- 
sponses of the beamformer, the nulls occur in the true 

direction of the jammers. However, the use of the HL- 
CLMS algorithm has at least an 15-dB attenuation over the 
LCLMS algorithm in the nulls direction. 

B. Case 2 

ß Next, if the JPR is increased to be 100 (the power 
difference of two jammers is 20 dB), and the step size/z• 
(or/z•) is bounded by 0</z•<5.529X 10 -7, the parame- 
ters and the results are given in Table II. 

As can be seen from the learning curves shown in Fig. 
7 (a) and (b), the convergence speed of the HLCLMS al- 
gorithm is much faster than the convergence speed the 
LCLMS algorithm. Again, the beam patterns of the beam- 
former for a different frequency response are shown in 
Figs. 8 and 9. We can see that the use of the HLCLMS 
algorithm has at the least a 21-dB attenuation over the 
LCLMS algorithm in the nulls direction. Again, we con- 
cluded that the HLCLMS algorithm outperformed the 
LCLMS algorithm. 

C. Case 3 

Finally, in case 3, we consider the power ratio between 
two jammers to be 1000, and the step size/zs (or/z•) to be 
bounded by 0</z•< 1.764X 10 -7. Again, from Table III, 
we found that the HLCLMS algorithm has deep nulls in 
the jammer directions. However, the LCLMS algorithm 
has a smaller null in the direction of jammer 2. In this case 
the attenuation of the nulls in the jammer directions using 
both the HLCLMS and the LCLMS algorithms is dramat- 
ically different as evident from Figs. 10-12. 

In case 1, since the JPR is small, both of the HLCLMS 
and LCLMS adaptive beamforming algorithms have good 
convergence properties and depth nulls in the direction of 
the jammers. However, ifi case 2 and case 3, because the 
power ratio between the two jammers became relatively 
larger, the jammer with small power can be nulled deeper 
using the HLCLMS adaptive algorithm than the LCLMS 
adaptive algorithm. To see the transient property of the 
beam pattern, the three-dimensional chart for N from 0 to 
90 iterations is shown in Fig. 13. In Fig. 13, the y axis 
indicates the iteration of adaptation processes. Here, only 

0 128 256 584 512 640 768 896 1024 

Number of iterotions (n) 

(a) HLCLMS 

LCLMS 

% . 

0 t28 256 384 fil•. 640 , 768 896 1024 

Number of iteration• (n) . 
/ 
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FIG. 10. Learning curve of case 3. 
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FIG. 11. The beam pattern at digital frequency 0.3, jammer arrival angle is 22.5 ø (case 3). 

the results of case 2 are given. From Fig. 13 (a), we found 
that after 90 iterations, jammer 2 can be nulled about -25 
dB but in Fig. 13(b) jammer 2 cannot be nulled satisfac- 
torily. From the results just described, we concluded that 
the HLCLMS beamforming algorithm is more robust than 
the LCLMS beamforming algorithm. 

The overall performance improvement of the pre- 
sented algorithm can be evaluated by the following two 
performance metrics, the ooerall increment time (OIT) 
and the convergence rate expressed in terms of the time 
constant. That is, when the improoement of conoergence 
rate (ICR) is larger than the OIT the overall performance 
improvement can be achieved. This is because the ICR is 
the measurement of the improvement of the rate of con- 
vergence with respect to the Frost's LCLMS algorithm. 
The theoretical equations of the OIT and ICR can be de- 
rived under certain conditions but the details are neglected 
in this paper due to limited space. However, from the the- 
oretical development we found that to satisfy the condition 
ICR > OIT, we should have JPR > 1.959. To be more spe- 
cific, considering JPR= 10 as an example, the overall per- 

formance can be evaluated by calculating the ICR and 
OIT. In this case, the overall computational requirement of 
the HLCLMS algorithm will be less than the LCLMS al- 
gorithm by 73.11%, when DEC station 2100 is employed. 

IV. CONCLUSIONS 

In this paper, we have derived the HLCLMS adaptive 
beamforming algorithm in the discrete cosine transformed 
domain for multiple jammers suppression. As discussed in 
the last section, the Frost's LCLMS adaptive beamforming 
algorithm is very sensitive to the environment in which, the 
power ratio between jammers is relatively large. To over- 
come this problem, we applied the hybrid LMS adaptive 
filtering technique to Frost's adaptive beamformer. 

From the simulation results, the advantage of using 
the HLCLMS adaptive beamforming algorithm has been 
demonstrated. In all cases, we have shown that the 
HLCLMS beamforming algorithm has a faster conver- 
gence rate and smaller steady-state MSE than the LCLMS 
beamforming algorithm. Moreover, in case 1, since the 
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FIG. 12. The beam pattern at digital frequency 0.4, jammer arrival angle is --18.1 ø (case 3). 
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(a) 

(b) 

FIG. 13. (a) The 3-D beam pattern of HLCLMS, digital frequency 0.4 
(case 2)- (b) 3-D beam pattern of LCLMS, digital frequency 0.4 (case 
2). 

JPR is small in both cases, both the HLCLMS and 
LCLMS adaptive beamforming algorithms have good con- 
vergence properties and depth nulls in the direction of jam- 
mers. However, in case 2 and case 3, because the power 
ratio between two jammers became relatively larger, the 
jammer with small power can be nulled deeper using the 
HLCLMS adaptive algorithm than the LCLMS adaptive 
algorithm. The attenuation of the nulls in the jammer di- 

rections by the HLCLMS algorithm has remained in the 
range of 50-60 dB in all the cases. This is not the case 
when the conventional Frost's beamforming algorithm is 
used. Moreover, the overall performance improvement can 
be achieved if the condition JPR > 1.959 is satisfied. 

APPENDIX A 

In this Appendix, we would like to show that 

P=WTPW 

with 

p=I--C(CrC)-lc r 

and W r as defined in (19). By definition, the constraint 
matrix C can be rewritten as 

C= [c•,...,cj,...,c•] = 

Consequently, 

IK OK O K --- O K 

OK IK OK --- O K 

ß ß ß ß ß 

O K --' O K IK OK 

.0 f ''' 0 f 0 f lf. 

AK OK '-- 

c(cTc)-IcT= OK AK ''' 
•f : '" O K --- 

where 

OK 

i KLX 

KLX L 

KL 

(A1) 

, (A2) 

AK= [IK(IKTIK)--11KT] (A3) 

and OK is the zero matrix. To prove P=WTPW, we first 
show that 

qffC(cTc) - •crq• =C(cTc) - •C r. (A4) 

Substituting (17), (A2), and (A3) into (A4), we have 

•rC(CrC)-'Cr•= 

L--I 

Z •Om•OmAK 
m=0 

L--1 

Z •lm•OmAK 
m=0 

L--1 

Z 
m=0 

L--1 

Z •Om•lmAK ''' 
m=O 

L--1 

m--O 

L--1 

m=O 

L--1 

Z •Om•(L--1)mAK 
m--O 

L--1 

Z •lm•(L--1)mnK 
m=O 

L--1 

Z •(L--1)m•(L--1)mAK 
m=O 

(AS) 
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Due to the orthonormal property described in (16), (A5) 
can be simplified as 

'As: 0K "' 0K 

xl/TC(CTC)_icT•i•= OK AK '" 0K 
OK OK ''' KLX 

=c(cTc)-Ic T. 

KL 

(A6) 

Using the result of (A6), we can readily prove that 

•Tp• = •T [I-C(CTC) - 1cT ] •I/ 

= I- q•T [ c(cTc) -1cT] q• 

- 1cT p =I-C(CTC) = . 

APPENDIX B 

In this Appendix, the directional pattern, in terms of 
the transformed weights, is derived. To do that, we recalled 
from (36), the beam pattern gain formula of the conven- 
tional Frost's LCLMS structure was given by 

K L 

G(O)= Z Z W(m--1)+f --jø•t(m--1)e(i--1)%sinO, 
i=1 m=l 

(B1) 

where o) t is the test frequency. Now, if we define q and w i 
as 

q= [ 1,e-J%,e-J2%,...,e-J(L- 1 )/ot] T (B2) 

and 

Wi= [ Wi,WK+i,W2K+i,"',W( L--1)K+i] T, (B3) 
respectively, then (B1) can be rewritten as 

K 

G(0)= Z w;q e(i--1)%sinO. (B4) 
i=1 

Recalled from (23) we have 

b=WTw, (B5) 

for convenience, we also define b i, the corresponding trans- 
formed weight vector of w i, as 

hi= [bi,bK+i,b2K+i,...,b(L_l)K+i] r. (B6) 
Accordingly, (B5) can be rearranged as 

bi=•rwi (B7) 
or 

w/r=b/r•b r, i=l,2,...,K. (B8) 
To simplify the beam pattern gain formula, we substitute 
(BS) into (B4), 

K 

G(0)= Z b;•rq e(i-1)%sinO. (B9) 
i= 1 

Moreover, we define 

q' =•bTq (B10) 
then (B9) will become 

K 

G(0)= Z b;q 'e(i-1)%sinO. (Bll) 
i=1 

Since, from (B 10), the parameter q' can be pre-calculated, 
to implement (B11) only one DCT with length L is re- 
quired. 
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